• Nitric oxide enhances extracellular ATP induced Ca2+ oscillation in He La cells

    分类: 生物学 >> 生物物理学 >> 生物物理、生物化学与分子生物学 提交时间: 2016-05-11

    摘要: Calcium (Ca2+) oscillations play a central role in varieties of cellular processes including fertilization and immune response, but controversy over the regulation mechanisms still exists. It has been known that nitric oxide (NO) dependently regulates Ca2+ signaling in most physiopathological processes. Previous study indicated that eNOS translocation during some pathological process influences intracellular Ca2+ homeostasis. In this study, we investigated the role and mechanism of NO on Ca2+ release by overexpressing eNOS in cytoplasm (Cyto-eNOS) and endoplasmic reticulum (ER-eNOS) of HeLa cells. We found that the properties of Ca2+ release were altered by the overexpression of eNOS. The amplitude and frequency of extracellular ATP (eATP)-induced Ca2+ oscillation were enhanced in both Cyto-eNOS and ER-eNOS cells, respectively. Especially, the enhancement of the amplitude and frequency of the Ca2+ oscillation was much more significant in the ER-eNOS cells than that of Cyto-eNOS cells. Further study indicated that this effect was abrogated by NO inhibitor, 1..-NAME, suggesting it was not an artificial result induced by ER stress. Furthermore, an up-regulated phosphorylation of phospholamban (PLB) was observed and the sarco-endoplasmic reticulum Ca2tATPase (SERCA) function was activated followed by the significant increase in the ER Ca2+ load. Taken together, we revealed a novel regulatory mechanism of Ca2+ oscillation. (C) 2014 Elsevier Inc. All rights reserved.